C9orf72 proline-arginine dipeptide repeats disrupt the proteasome and perturb proteolytic activities

Author:

Zhang Yifan1,Nelson Sophia C K1,Viera Ortiz Ashley P2,Lee Edward B23,Fairman Robert1ORCID

Affiliation:

1. Department of Biology, Haverford College, Haverford, Pennsylvania, USA

2. Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, Pennsylvania, USA

3. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Abstract

Abstract The hexanucleotide G4C2 repeat expansion in C9orf72 is the most frequent genetic cause of familial amyotrophic lateral sclerosis (ALS). Aberrant translation of this hexanucleotide sequence leads to production of 5 dipeptide repeats (DPRs). One of these DPRs is proline-arginine (polyPR), which is found in C9orf72-expanded ALS (C9ALS) patient brain tissue and is neurotoxic across multiple model systems. PolyPR was previously reported to bind and impair proteasomes in vitro. Nevertheless, the clinical relevance of the polyPR-proteasome interaction and its functional consequences in vivo are yet to be established. Here, we aim to confirm and functionally characterize polyPR-induced impairment of proteolysis in C9ALS patient tissue and an in vivo model system. Confocal microscopy and immunofluorescence studies on both human and Drosophila melanogaster brain tissues revealed sequestration of proteasomes by polyPR into inclusion-like bodies. Co-immunoprecipitation in D. melanogaster showed that polyPR strongly binds to the proteasome. In vivo, functional evidence for proteasome impairment is further shown by the accumulation of ubiquitinated proteins along with lysosomal accumulation and hyper-acidification, which can be rescued by a small-molecule proteasomal enhancer. Together, we provide the first clinical report of polyPR-proteasome interactions and offer in vivo evidence proposing polyPR-induced proteolytic dysfunction as a pathogenic mechanism in C9ALS.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3