Hippocampal Lipocalin 2 Is Associated With Neuroinflammation and Iron-Related Oxidative Stress in ob/ob Mice

Author:

Jin Zhen1,Kim Kyung Eun1,Shin Hyun Joo1,Jeong Eun Ae1,Park Kyung-Ah1,Lee Jong Youl1,An Hyeong Seok1,Choi Eun Bee1,Jeong Jae Hun1,Kwak Woori12,Roh Gu Seob1

Affiliation:

1. Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)

2. C&K Genomics, Inc., Seoul, Republic of Korea

Abstract

Abstract Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.

Funder

Basic Science Research Program

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology,General Medicine,Pathology and Forensic Medicine

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3