Bone Marrow-Derived Mesenchymal Stem Cell-Derived Exosomes Containing Gli1 Alleviate Microglial Activation and Neuronal Apoptosis In Vitro and in a Mouse Parkinson Disease Model by Direct Inhibition of Sp1 Signaling

Author:

Cai Yang1,Zhang Ming-Ming1,Wang Ming1,Jiang Zhuo-Hang1,Tan Zhi-Gang1ORCID

Affiliation:

1. Department of Neurosurgery, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province 410011, P.R. China

Abstract

Abstract This study investigated possible therapeutic effect mechanisms of exosomes from bone marrow-derived mesenchymal stem cells (BMSC) in neuronal and microglial cells and in a Parkinson disease (PD) model. Neuronal SH-SY5Y cells and microglial HMC3 cells were subjected to 1-methyl-4-phenylpyridinium (MPP+) or LPS, respectively. The mRNA and protein expression was assessed using qRT-PCR, Western blotting, and enzyme-linked immunosorbent assay. Cell viability and apoptosis of SH-SY5Y cells were examined using the MTT assay and flow cytometry. Chromatin immunoprecipitation assays were performed to assess the binding relationship between glioma-associated oncogene homolog 1 (Gli1) and the Sp1 transcription factor promoter. BMSC-derived exosomes promoted cell proliferation and inhibited apoptosis in MPP+-treated SH-SY5Y cells and suppressed inflammatory markers in LPS-treated HMC3 cells. Sp1 knockdown decreased SH-SY5Y cell damage and HMC3 immune activation. Gli1 carried by BMSC exosomes directly bound with Sp1 to inhibit Sp1-mediated LRRK2 activation whereas exosomes secreted by Gli1-knockdown in BMSC did not. In a PD mouse model induced with MPTP, BMSC exosomes decreased neuron loss injury and the inflammatory response by inhibiting Sp1 signaling. Thus, BMSC-derived exosomal Gli1 alleviates inflammatory damage and neuronal apoptosis by inhibiting Sp1 in vitro and in vivo. These findings provide the basis for the potential clinical use of BMSC-derived exosomes in PD.

Funder

Hunan Provincial Key Research and Development Program of Science and Technology Innovation Plan

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3