Advantages of an Automated Method Compared With Manual Methods for the Quantification of Intraepidermal Nerve Fiber in Skin Biopsy

Author:

Corrà Marta Francisca1,Sousa Mafalda2,Reis Inês3,Tanganelli Fabiana4,Vila-Chã Nuno3,Sousa Ana Paula3,Magalhães Rui3,Sampaio Paula2,Taipa Ricardo13,Maia Luís132

Affiliation:

1. From the Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto

2. Instituto de investigação e inovação em Saúde da Universidade do Porto (i3S), Porto, Portugal

3. Department of Neurology, Centro Hospitalar Universitário do Porto (CHUP)

4. Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Munich, Germany

Abstract

Abstract Intraepidermal nerve fiber density (IENFD) measurements in skin biopsy are performed manually by 1–3 operators. To improve diagnostic accuracy and applicability in clinical practice, we developed an automated method for fast IENFD determination with low operator-dependency. Sixty skin biopsy specimens were stained with the axonal marker PGP9.5 and imaged using a widefield fluorescence microscope. IENFD was first determined manually by 3 independent observers. Subsequently, images were processed in their Z-max projection and the intradermal line was delineated automatically. IENFD was calculated automatically (fluorescent images automated counting [FIAC]) and compared with manual counting on the same fluorescence images (fluorescent images manual counting [FIMC]), and with classical manual counting (CMC) data. A FIMC showed lower variability among observers compared with CMC (interclass correlation [ICC] = 0.996 vs 0.950). FIMC and FIAC showed high reliability (ICC = 0.999). A moderate-to-high (ICC = 0.705) was observed between CMC and FIAC counting. The algorithm process took on average 15 seconds to perform FIAC counting, compared with 10 minutes for FIMC counting. This automated method rapidly and reliably detects small nerve fibers in skin biopsies with clear advantages over the classical manual technique.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology,General Medicine,Pathology and Forensic Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3