Is Next-Generation Sequencing Alone Sufficient to Reliably Diagnose Gliomas?

Author:

Kam Kwok Ling1,Appin Christina L2,Mao Qinwen1,Ikegami Sachie3,Lukas Rimas V4,Nikiforova Marina N5,Roy Somak5,Brat Daniel J1,Horbinski Craig1

Affiliation:

1. Department of Pathology, Northwestern University, Chicago, Illinois

2. Department of Neurological Surgery, University of California, San Francisco, San Francisco, California

3. NorthShore University HealthSystem, Evanston

4. Department of Neurology, Northwestern University, Chicago (RVL), Illinois

5. Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania

Abstract

Abstract The power and widespread use of next-generation sequencing (NGS) in surgical neuropathology has raised questions as to whether NGS might someday fully supplant histologic-based examination. We therefore sought to determine the feasibility of relying on NGS alone for diagnosing infiltrating gliomas. A total of 171 brain lesions in adults, all of which had been analyzed by GlioSeq NGS, comprised the study cohort. Each case was separately diagnosed by 6 reviewers, based solely on age, sex, tumor location, and NGS results. Results were compared with the final integrated diagnoses and scored on the following scale: 0 = either wrong tumor type or correct tumor type but off by 2+ grades; 1 = off by 1 grade; 2 = exactly correct. Histology alone was treated as a seventh reviewer. Overall reviewer accuracy ranged from 81.6% to 94.2%, while histology alone scored 87.1%. For glioblastomas, NGS was more accurate than histology alone (93.8%–97.9% vs 87.5%). The NGS accuracy for grade II and III astrocytoma and oligodendroglioma was only 54.3%–84.8% and 34.4%–87.5%, respectively. Most uncommon gliomas, including BRAF-driven tumors, could not be accurately classified just by NGS. These data indicate that, even in this era of advanced molecular diagnostics, histologic evaluation is still an essential part of optimal patient care.

Funder

National Institutes of Health

Northwestern SPORE in Brain Cancer

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology,General Medicine,Pathology and Forensic Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3