The CTSC-RAB38 Fusion Transcript Is Associated With the Risk of Hemorrhage in Brain Arteriovenous Malformations

Author:

Yan Zihan1234,Fan Guangming12345,Li Hao1234,Jiao Yuming1234,Fu Weilun1234,Weng Jiancong1234,Huo Ran1234,Wang Jie1234,Xu Hongyuan1234,Wang Shuo1234,Cao Yong1234,Zhao Jizong12346

Affiliation:

1. From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University

2. China National Clinical Research Center for Neurological Diseases

3. Center of Stroke, Beijing Institute for Brain Disorders

4. Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease

5. Chaoyang Central Hospital, Liaoning Province, China

6. Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Brain arteriovenous malformations (bAVMs) are congenital anomalies of blood vessels that cause intracranial hemorrhage in children and young adults. Chromosomal rearrangements and fusion genes play an important role in tumor pathogenesis, though the role of fusion genes in bAVM pathophysiological processes is unclear. The aim of this study was to identify fusion transcripts in bAVMs and analyze their effects. To identify fusion transcripts associated with bAVM, RNA sequencing was performed on 73 samples, including 66 bAVM and 7 normal cerebrovascular samples, followed by STAR-Fusion analysis. Reverse transcription polymerase chain reaction and Sanger sequencing were applied to verify fusion transcripts. Functional pathway analysis was performed to identify potential effects of different fusion types. A total of 21 fusion transcripts were detected. Cathepsin C (CTSC)-Ras-Related Protein Rab-38 (RAB38) was the most common fusion and was detected in 10 of 66 (15%) bAVM samples. In CTSC-RAB38 fusion-positive samples, CTSC and RAB38 expression was significantly increased and activated immune/inflammatory signaling. Clinically, CTSC-RAB38 fusion bAVM cases had a higher hemorrhage rate than non-CTSC-RAB38 bAVM cases (p < 0.05). Our study identified recurrent CTSC-RAB38 fusion transcripts in bAVMs, which may be associated with bAVM hemorrhage by promoting immune/inflammatory signaling.

Funder

National Key Research and Development Program of China during the 13th Five-Year Plan Period

Principle Investigator: Professor Yong Cao

Principle Investigator: Professor Shuo Wang) and the “Key Project of Beijing Municipal Science & Technology Commission

Principal Investigator: Professor Shuo Wang

Principle Investigator: Professor Jizong Zhao

Genomics Platform Construction for Chinese Major Brain Disease-AVM

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3