Phenotypic Spectrum of α-Dystroglycanopathies Associated With the c.919T>a Variant in the FKRP Gene in Humans and Mice

Author:

Brown Susan C1,Fernandez-Fuente Marta1,Muntoni Francesco2,Vissing John3ORCID

Affiliation:

1. Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK

2. Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK and National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London

3. Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Abstract

Abstract Mutations in the fukutin-related protein gene, FKRP, are the most frequent single cause of α-dystroglycanopathy. Rare FKRP mutations are clinically not well characterized. Here, we review the phenotype associated with the rare c.919T>A mutation in FKRP in humans and mice. We describe clinical and paraclinical findings in 6 patients, 2 homozygous, and 4-compound heterozygous for c.919T>A, and compare findings with a mouse model we generated, which is homozygous for the same mutation. In patients, the mutation at the homozygous state is associated with a severe congenital muscular dystrophy phenotype invariably characterized by severe multisystem disease and early death. Compound heterozygous patients have a severe limb-girdle muscular dystrophy phenotype, loss of ambulation before age 20 and respiratory insufficiency. In contrast, mice homozygous for the same mutation show no symptoms or signs of muscle disease. Evidence therefore defines the FKRP c.919T>A as a very severe mutation in humans. The huge discrepancy between phenotypes in humans and mice suggests that differences in protein folding/processing exist between human and mouse Fkrp. This emphasizes the need for more detailed structural analyses of FKRP and shows the challenges of developing appropriate animal models of dystroglycanopathies that mimic the disease course in humans.

Funder

NIHR

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3