Outside the fiber: Endomysial stromal and capillary pathology in skeletal muscle may impede infusion therapy in infantile-onset Pompe disease

Author:

Buckley Anne F1ORCID,Desai Ankit K2,Ha Christine I2,Petersen Maureen A1,Estrada Januario C1,Waterfield Justin R1,Bossen Edward H1,Kishnani Priya S2

Affiliation:

1. Department of Pathology, Duke University Medical Center , Durham, North Carolina, USA

2. Department of Pediatrics and Medical Genetics, Duke University Medical Center , Durham, North Carolina, USA

Abstract

AbstractThe survival of infantile-onset Pompe disease (IOPD) patients has improved dramatically since the introduction of enzyme replacement therapy (ERT) with a1glucosidase alfa. However, long-term IOPD survivors on ERT demonstrate motor deficits indicating that current therapy cannot completely prevent disease progression in skeletal muscle. We hypothesized that in IOPD, skeletal muscle endomysial stroma and capillaries would show consistent changes that could impede the movement of infused ERT from blood to muscle fibers. We retrospectively examined 9 skeletal muscle biopsies from 6 treated IOPD patients using light and electron microscopy. We found consistent ultrastructural endomysial stromal and capillary changes. The endomysial interstitium was expanded by lysosomal material, glycosomes/glycogen, cellular debris, and organelles, some exocytosed by viable muscle fibers and some released on fiber lysis. Endomysial scavenger cells phagocytosed this material. Mature fibrillary collagen was seen in the endomysium, and both muscle fibers and endomysial capillaries showed basal laminar reduplication and/or expansion. Capillary endothelial cells showed hypertrophy and degeneration, with narrowing of the vascular lumen. Ultrastructurally defined stromal and vascular changes likely constitute obstacles to movement of infused ERT from capillary lumen to muscle fiber sarcolemma, contributing to the incomplete efficacy of infused ERT in skeletal muscle. Our observations can inform approaches to overcoming these barriers to therapy.

Funder

The Emerson & Barbara Kampen Foundation

Lucas Garrett Pompe Foundation

Sanofi Genzyme and Amicus Therapeutics

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3