LncRNA HAGLR promotes the proliferation, migration, and neurotrophic factor production of Schwann cells via miR-204/CDK5R1 after sciatic nerve injury

Author:

Xia Lei12,Li Peng2,Bi Wenchao2,Yang Ruize2,Zhang Yuelin1

Affiliation:

1. School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center , Xi’an, Shaanxi, China

2. Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University Health Science Center , Xi’an, Shaanxi, China

Abstract

AbstractPeripheral nerve injury induces motor and sensory defects and has serious impacts on patients’ quality of life. Schwann cells (SCs) are the major glial cells in the peripheral nervous system and play important roles in the repair and regeneration of peripheral nerves. Long noncoding RNA HAGLR has been reported to be highly expressed in neurons and to promote neuronal differentiation but its expression decreases after nerve injury, suggesting that HAGLR may be involved in the process of nerve injury repair. This study aimed to investigate the role and mechanism of HAGLR in neural repair functions of SCs. We found that HAGLR promoted SC proliferation and migration and facilitated the secretion of neurotrophic factors. Furthermore, HAGLR functions as a competing endogenous RNA to regulate CDK5R1 expression via sponging miR-204. Overexpression of miR-204 or silencing of CDK5R1 partially abolished the promoting effect of HAGLR on SCs. Moreover, overexpression of HAGLR promoted the functional recovery of sciatic nerve crush (SNC) model rats. In summary, HAGLR promoted SC proliferation, migration, neurotrophic factor production, and facilitated functional recovery of SNC rats via miR-204/CDK5R1. Therefore, it may provide a potential therapeutic target for peripheral nerve repair and regeneration.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development;International Journal of Molecular Sciences;2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3