Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms

Author:

Poppinga Simon12ORCID,Correa David34ORCID,Bruchmann Bernd5ORCID,Menges Achim4ORCID,Speck Thomas126ORCID

Affiliation:

1. Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany

2. Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany

3. Institute for Computational Design and Construction (ICD), University of Stuttgart, Stuttgart, Germany

4. School of Architecture, University of Waterloo, Cambridge, ON, Canada

5. BASF SE Advanced Materials and Systems Research, Ludwigshafen, Germany

6. Cluster of Excellence livMatS @ Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany

Abstract

Synopsis Plant movements are of increasing interest for biomimetic approaches where hinge-free compliant mechanisms (flexible structures) for applications, for example, in architecture, soft robotics, and medicine are developed. In this article, we first concisely summarize the knowledge on plant movement principles and show how the different modes of actuation, that is, the driving forces of motion, can be used in biomimetic approaches for the development of motile technical systems. We then emphasize on current developments and breakthroughs in the field, that is, the technical implementation of plant movement principles through additive manufacturing, the development of structures capable of tracking movements (tropisms), and the development of structures that can perform multiple movement steps. Regarding the additive manufacturing section, we present original results on the successful transfer of several plant movement principles into 3D printed hygroscopic shape-changing structures (“4D printing”). The resulting systems include edge growth-driven actuation (as known from the petals of the lily flower), bending scale-like structures with functional bilayer setups (inspired from pinecones), modular aperture architectures (as can be similarly seen in moss peristomes), snap-through elastic instability actuation (as known from Venus flytrap snap-traps), and origami-like curved-folding kinematic amplification (inspired by the carnivorous waterwheel plant). Our novel biomimetic compliant mechanisms highlight the feasibility of modern printing techniques for designing and developing versatile tailored motion responses for technical applications. We then focus on persisting challenges in the field, that is, how to speed-boost intrinsically slow hydraulically actuated structures and how to achieve functional resilience and robustness, before we propose the establishment of a motion design catalog in the conclusion.

Funder

BASF SE

Ludwigshafen

Ministry of Science Research and Arts of the State of Baden-Württemberg

Academic Research Alliance JONAS

BASF SE and the University of Freiburg

Bio-inspirierte elastische Materialsysteme und Verbundkomponenten für nachhaltiges Bauen im 21ten Jahrhundert”

Zukunftsoffensive IV Innovation und Exzellenz

Aufbau und Stärkung der Forschungsinfrastruktur im Bereich der Mikro- und Nanotechnologie sowie der neuen Materialien

German Research Foundation

Germany’s Excellence Strategy

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Reference60 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3