Getting Humans Off Monkeys’ Backs: Using Primate Acclimation as a Guide for Habitat Management Efforts

Author:

Thompson Cynthia L1ORCID,Williams Susan H2ORCID,Glander Kenneth E3ORCID,Teaford Mark F4ORCID,Vinyard Christopher J5ORCID

Affiliation:

1. Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA

2. Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA

3. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA

4. Department of Basic Science, College of Osteopathic Medicine, Touro University, Vallejo, CA, USA

5. Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA

Abstract

Synopsis Wild primates face grave conservation challenges, with habitat loss and climate change projected to cause mass extinctions in the coming decades. As large-bodied Neotropical primates, mantled howling monkeys (Alouatta palliata) are predicted to fare poorly under climate change, yet are also known for their resilience in a variety of environments, including highly disturbed habitats. We utilized ecophysiology research on this species to determine the morphological, physiological, and behavioral mechanisms howlers employ to overcome ecological challenges. Our data show that howlers at La Pacifica, Costa Rica are capable of modifying body size. Howlers displayed reduced mass in warmer, drier habitats, seasonal weight changes, frequent within-lifetime weight fluctuations, and gradual increases in body mass over the past four decades. These within-lifetime changes indicate a capacity to modify morphology in a way that can impact animals’ energetics and thermodynamics. Howlers are also able to consume foods with a wide variety of food material properties by altering oral processing during feeding. While this capability suggests some capacity to cope with the phenological shifts expected from climate change and increased habitat fragmentation, data on rates of dental microwear warn that these acclimations may also cost dental longevity. Lastly, we found that howlers are able to acclimate to changing thermal pressures. On shorter-term daily scales, howlers use behavioral mechanisms to thermoregulate, including timing activities to avoid heat stress and utilizing cool microhabitats. At the seasonal scale, animals employ hormonal pathways to influence heat production. These lines of evidence cumulatively indicate that howlers possess morphological, physiological, and behavioral mechanisms to acclimate to environmental challenges. As such, howlers’ plasticity may facilitate their resilience to climate change and habitat loss. While habitat loss in the tropics is unlikely to abate, our results point to a potential benefit of active management and selective cultivation to yield large, interconnected forest fragments with targeted phenology that provides both a complex physical structure and a diversity of food sources. These steps could assist howlers in using their natural acclimation potential to survive future conservation threats.

Funder

National Science Foundation

Conservation International

Ohio University Baker & Research Challenge Awards

Duke Arts & Sciences Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3