Evidence that the Dorsal Velvet of Barn Owl Wing Feathers Decreases Rubbing Sounds during Flapping Flight

Author:

LePiane Krista1ORCID,Clark Christopher J1

Affiliation:

1. Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92520, USA

Abstract

Synopsis Owls have specialized feather features hypothesized to reduce sound produced during flight. One of these features is the velvet, a structure composed of elongated filaments termed pennulae that project dorsally from the upper surface of wing and tail feathers. There are two hypotheses of how the velvet functions to reduce sound. According to the aerodynamic noise hypothesis, the velvet reduces sound produced by aerodynamic processes, such as turbulence development on the surface of the wing. Alternatively, under the structural noise hypothesis, the velvet reduces frictional noise produced when two feathers rub together. The aerodynamic noise hypothesis predicts impairing the velvet will increase aerodynamic flight sounds predominantly at low frequency, since turbulence formation predominantly generates low frequency sound; and that changes in sound levels will occur predominantly during the downstroke, when aerodynamic forces are greatest. Conversely, the frictional noise hypothesis predicts impairing the velvet will cause a broadband (i.e., across all frequencies) increase in flight sounds, since frictional sounds are broadband; and that changes in sound levels will occur during the upstroke, when the wing feathers rub against each other the most. Here, we tested these hypotheses by impairing with hairspray the velvet on inner wing feathers (P1-S4) of 13 live barn owls (Tyto alba) and measuring the sound produced between 0.1 and 16 kHz during flapping flight. Relative to control flights, impairing the velvet increased sound produced across the entire frequency range (i.e., the effect was broadband) and the upstroke increased more than the downstroke, such that the upstroke of manipulated birds was louder than the downstroke, supporting the frictional noise hypothesis. Our results suggest that a substantial amount of bird flight sound is produced by feathers rubbing against feathers during flapping flight.

Funder

National Science Foundation Graduate Research Fellowship Program

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3