Affiliation:
1. Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
Abstract
Abstract
Northern saw-whet owls (Aegolius acadicus) are nocturnal predators that are able to acoustically localize prey with great accuracy; an ability that is attributed to their unique asymmetrical ear structure. While a great deal of research has focused on open loop sound localization prior to flight in owls (primarily barn owls), directional sensitivity of the ears may also be important in locating moving prey on the wing. Furthermore, directionally sensitive ears may also reduce the effects of masking noise, either from the owls’ wings during flight or environmental noise (e.g., wind and leaf rustling), by enhancing spatial segregation of target sounds and noise sources. Here, we investigated auditory processing of Northern saw-whet owls in three-dimensional space using auditory evoked potentials (AEPs). We simultaneously evoked auditory responses in two channels (right and left ear) with broadband clicks from a sound source that could be manipulated in space. Responses were evoked from 66 spatial locations, separated by 30° increments in both azimuth and elevation. We found that Northern saw-whet owls had increased sensitivity to sound sources directly in front of and above their beaks and decreased sensitivity to sound sources below and behind their heads. The spatial region of highest sensitivity extends from the lower beak to the crown of the head and 30° left or right of the median plane, dropping off beyond those margins. Directional sensitivity is undoubtedly useful during foraging and predator evasion, and may also reduce the effect of masking noise from the wings during flight due to the spatial segregation of the noise and targets of interest.
Funder
The John Burroughs Natural History Society
Society for Integrative and Comparative Biology
Company of Biologists
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献