Anti-predator behavior along elevational and latitudinal gradients in dark-eyed juncos

Author:

Andrade Madelin1,Blumstein Daniel T1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA

Abstract

Abstract Flight-initiation distance (FID), the distance between an individual and experimenter when it begins to flee, can be used to quantify risk-assessment. Among other factors, prior studies have shown that latitude explains significant variation in avian FID: at lower latitudes, individuals and species have longer FIDs than those living at higher latitudes. No prior studies have focused on the effect of elevation on FID. Given the similar patterns of seasonality, climate, and potentially predator density, that covary between latitude and elevation, birds at higher elevations might tolerate closer approaches. We asked whether elevation or latitude would explain more variation in the FID of a common passerine bird species, dark-eyed juncos (Junco hyemalis). Juncos live in a variety of habitats along both latitudinal and elevational gradients. We found that statistical models containing elevation as a variable explained more of the variation in FID than did models containing latitude. We also found, unexpectedly, that birds at higher elevation fled at greater distances. While more predators were sighted per hour at higher elevations than at lower elevations, the frequency of predator sightings did not explain a significant amount of variation in FID. This result questions whether predator density is the main driver of risk perception along elevational gradients. Nonetheless, because elevation explains more variation in FID than latitude in at least one species, these findings have direct implications on how human impacts on birds are managed. Specifically, those designing set-back zones to reduce human impact on birds may consider modifying them based on both latitude and elevation.

Funder

Pasadena Audubon Society

UCLA Department of Ecology and Evolutionary Biology

White Mountain Research Center

US National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3