Allee effects drive the coevolution of cooperation and group size in high reproductive skew groups

Author:

Lerch Brian A12ORCID,Abbott Karen C1

Affiliation:

1. Department of Biology, Case Western Reserve University, Cleveland, OH, USA

2. Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract

Abstract The evolution of cooperation between conspecifics is a fundamental evolutionary puzzle, with much work focusing on the evolution of cooperative breeding. Surprisingly, although we expect cooperation to affect the population structures in which individuals interact, most studies fail to allow cooperation and population structure to coevolve. Here, we build two models containing group-level Allee effects (positive density dependence at low group sizes) to study the coevolution of cooperation and group size. Group-level Allee effects, although common in cooperatively breeding species, remain understudied for their evolutionary implications. We find that a trait that affects group size can cause increased cooperation to be favored evolutionarily even in a group with complete reproductive skew. In particular, we find a single evolutionarily stable attractor in our model corresponding to moderate helpfulness and group size. In general, our results demonstrate that, even in groups with complete reproductive skew, Allee effects can be important for the evolution of cooperation and that the evolution of cooperation may be closely linked to the evolution of group size. Further, our model matches empirical data in African wild dogs (Lycaon pictus), suggesting that it may have an application in understanding social evolution in this endangered species.

Funder

James S. McDonnell Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3