Competitively mediated changes in male toad calls can depend on call structure

Author:

Stirman Rebecca1,Pfennig Karin S1ORCID

Affiliation:

1. Department of Biology, University of North Carolina, Chapel Hill, NC, USA

Abstract

Abstract Males of many species aggregate in large groups where they signal to attract females. These large aggregations create intense competition for mates, and the simultaneous signaling by many individuals can impair any given male’s ability to attract females. In response to this situation, male signals can be modified, either evolutionarily or facultatively, such that the detectability of the signal is enhanced. The way in which signals are modified varies among even closely related species, yet few studies have evaluated what causes such variation. Here, we address this issue using male spadefoot toads (Spea multiplicata and Spea bombifrons), which call to attract females. Using data from natural populations, we examined if, and how, male calls of 3 different call types (S. multiplicata with a slow call, S. bombifrons with a slow call, and S. bombifrons with a fast call) varied depending on competition with other males. We found that in both call types consisting of slow calls, call pulse rate decreased with increasing competition. By contrast, in the call type consisting of fast calls, call rate decreased with increasing competition. Moreover, we found that the relationship between competition and male call effort—a measure of the energy that males expend in calling––differed between the call types. Such variation in male signals in response to competition can have important implications for explaining diversity in male signals and patterns of sexual selection.

Funder

Sigma Xi

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3