Male social plasticity influences transient dynamics in the emergence of alternative mating systems in water striders

Author:

Perez Adrian1ORCID,Montiglio Pierre-Olivio23,Wey Tina W24ORCID,Sih Andrew2ORCID

Affiliation:

1. Department of Entomology, University of California at Davis, Davis, CA, USA

2. Department of Environmental Sciences and Policy, University of California at Davis, Davis, CA, USA

3. Université du Québec à Montréal, Montréal, Quebec, Canada

4. Université de Sherbrooke, Sherbrooke, Quebec, Canada

Abstract

AbstractAnimal mating systems are often studied with the goal of understanding why species, populations, or groups vary from one another in the system they display. Although these differences are often treated as basically stable, it is also known that mating systems may shift over time (e.g., from one breeding season to the next). There has been some study of how ecological factors correlate with these changes; however, few, if any, studies have investigated how the phenotypic composition of a group governs the timing and probability of these mating system transitions. Groups of stream water striders (Aquarius remigis) can experience rapid changes in mating system dynamics, with small groups often transitioning into a system in which a single, large male monopolizes mating opportunities. We asked if variation in individual- and group-level traits associated with morphology and behavior (e.g., size of the largest individual, average activity behavioral type in the group) could partially explain the variability in how rapidly groups make this transition, if they make it at all. We show that groups with males that exhibit higher social plasticity tended to take longer to transition to a mating system dominated by a single male. Our results, therefore, suggest that groups in identical ecological conditions can diverge in their mating systems based on how much individuals in the group change their behavior in response to the behavior of other members of the group.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3