Foraging in heterogeneous landscapes: variation in movement patterns of a tropical sand-bubbler crab

Author:

Hui Tin Yan1ORCID,Williams Gray A1ORCID

Affiliation:

1. The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong , PR China

Abstract

Abstract Acquiring food in heterogeneous landscapes presents a challenge to many foragers, as searching for food in an optimal manner is difficult in spatially and temporally variable environments. Investigating individual foraging patterns can elucidate how environmental variations at different scales constrain or select for energy-optimizing movements, which can inform conservation and management strategies by identifying spatio-temporal variations in species’ habitat use. To test how such movements vary with environmental conditions, we investigated foraging patterns of the deposit-feeding sand-bubbler crab, Scopimera intermedia Balss, 1934 at multiple spatial and temporal scales on soft sediment shores in Hong Kong. On a broad, annual, scale the crabs produced foraging tracks of different length and foraged over different areas around their burrows between hot and cool seasons. Although foraging movements of the crabs were slower and more restricted during the cool season, probably due to low environmental temperatures, foraging areas during the hot season were larger but limited by increasing conspecific interactions. Over a smaller scale at which the crabs make movement decisions, parameters such as turning angle and speed were variable, even within individual foraging excursions. Such variations appeared to be responses to small-scale variations in sediment food patches, which resulted in the crabs employing multiple movement modes. This context-dependent foraging strategy enables the crabs to feed for a longer time in food-rich patches compared with a fixed strategy and is, therefore, critical for species living in environments such as intertidal sediments, where food distribution is heterogeneous and foraging time is constrained by the tide.

Funder

University of Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3