Sympatric wren-warblers partition acoustic signal space and song perch height

Author:

Chitnis Shivam S1,Rajan Samyuktha1,Krishnan Anand1ORCID

Affiliation:

1. Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, India

Abstract

Abstract Animals employing acoustic signals, such as birds, must effectively communicate over both background noise and potentially attenuating objects in the environment. To surmount these obstacles, animals evolve species-specific acoustic signals that do not overlap with sources of interference (such as songs of close relatives), and issue these songs from locations that maximize transmission. In multispecies assemblages of birds, the acoustic resource may thus be interspecifically partitioned along multiple axes, including song perch height and signal space. However, very few such studies have focused on open habitats, where differences in sound transmission patterns and limited availability of song perches may drive competition across multiple axes within signal space. Here, we demonstrate acoustic signal space partitioning in four sympatric species of wren-warbler (Cisticolidae, Prinia), in an Indian dry deciduous scrub-grassland habitat. We found that the breeding songs of the four species partition acoustic signal space, resulting in interspecific community organization. Within each species’ signal space, we uncovered different intraspecific patterns in note diversity. Two species partition intraspecific signal space into multiple note types, whereas the other two vary note repetition rate to different extents. Finally, we found that the four species also partition song perch heights, thus exhibiting acoustic niche separation along multiple axes. We hypothesize that divergent song perch heights may be driven by competition for higher singing perches or other ecological factors rather than signal propagation. Acoustic signal partitioning along multiple axes may therefore arise from a combination of diverse ecological processes.

Funder

Department of Science and Technology, Government of India and an Early Career Research

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3