Analysis of direct and indirect genetic effects in fighting sea anemones

Author:

Lane Sarah M1ORCID,Wilson Alastair J2,Briffa Mark1ORCID

Affiliation:

1. School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK

2. Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK

Abstract

Abstract Theoretical models of animal contests such as the Hawk-Dove game predict that variation in fighting behavior will persist due to mixed evolutionarily stable strategies (ESS) under certain conditions. However, the genetic basis for this variation is poorly understood and a mixed ESS for fighting can be interpreted in more than one way. Specifically, we do not know whether variation in aggression within a population arises from among-individual differences in fixed strategy (determined by an individual’s genotype—direct genetic effects [DGEs]), or from within-individual variation in strategy across contests. Furthermore, as suggested by developments of the original Hawk-Dove model, within-individual variation in strategy may be dependent on the phenotype and thus genotype of the opponent (indirect genetic effects—IGEs). Here we test for the effect of DGEs and IGEs during fights in the beadlet sea anemone Actinia equina. By exploiting the unusual reproductive system of sea anemones, combined with new molecular data, we investigate the role of both additive (DGE + IGE) and non-additive (DGE × IGE) genetic effects on fighting parameters, the latter of which have been hypothesized but never tested for explicitly. We find evidence for heritable variation in fighting ability and that fight duration increases with relatedness. Fighting success is influenced additively by DGEs and IGEs but we found no evidence for non-additive IGEs. These results indicate that variation in fighting behavior is driven by additive indirect genetic effects (DGE + IGE), and support a core assumption of contest theory that strategies are fixed by DGEs.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3