Stability–Maneuverability Tradeoffs Provided Diverse Functional Opportunities to Shelled Cephalopods

Author:

Peterman David J1ORCID,Ritterbush Kathleen A1

Affiliation:

1. Department of Geology and Geophysics, University of Utah , Salt Lake City, UT 84112 , USA

Abstract

Synopsis Stability–maneuverability tradeoffs impose various constraints on aquatic locomotion. The fossil record houses a massive morphological dataset that documents how organisms have encountered these tradeoffs in an evolutionary framework. Externally shelled cephalopods (e.g., ammonoids and nautiloids) are excellent targets to study physical tradeoffs because they experimented with numerous conch morphologies during their long-lived evolutionary history (around 0.5 billion years). The tradeoff between hydrostatic stability and maneuverability was investigated with neutrally buoyant biomimetic models, engineered to have the same mass distributions computed for their once-living counterparts. Monitoring rocking behavior with 3D motion tracking reveals how stability influenced the life habits of these animals. Cephalopods with short body chambers and rapid whorl expansion (oxycones) more quickly attenuate rocking, while cephalopods with long body chambers (serpenticones and sphaerocones) had improved pitch maneuverability. Disparate conch morphologies presented broad functional opportunities to these animals, imposing several advantages and consequences across the morphospace. These animals navigated inescapable physical constraints enforced by conch geometry, illuminating key relationships between functional diversity and morphological disparity in aquatic ecosystems. Our modeling techniques correct for differences in material properties between physical models and those inferred for their living counterparts. This approach provides engineering solutions to the obstacles created by buoyancy, mass distributions, and moments of inertia, permitting more lifelike, free-swimming biomechanical models and aquatic robots.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3