Reconstructing Articular Cartilage in the Australopithecus afarensis Hip Joint and the Need for Modeling Six Degrees of Freedom

Author:

Wiseman Ashleigh L A12ORCID,Demuth Oliver E34ORCID,Pomeroy Emma5ORCID,De Groote Isabelle6ORCID

Affiliation:

1. McDonald Institute for Archaeological Research, University of Cambridge , Cambridge CB2 1TN

2. Research Centre in Evolutionary Anthropology and Paleoecology, Liverpool John Moores University , Liverpool, Merseyside L3 5UX

3. Department of Earth Sciences, University of Cambridge , Cambridge CB2 1TN

4. Structure and Motion Laboratory , Royal Veterinary College, London NW1 0TU

5. Department of Archaeology, University of Cambridge , Cambridge CB2 1TN

6. Department of Archaeology, Ghent University , 9000 Ghent

Abstract

Synopsis The postcranial skeleton of Australopithecus afarensis (AL 288–1) exhibits clear adaptations for bipedality, although there is some debate as to the efficiency and frequency of such upright movement. Some researchers argue that AL 288–1 walked with an erect limb like modern humans do, whilst others advocate for a “bent-hip bent-knee” (BHBK) gait, although in recent years the general consensus favors erect bipedalism. To date, no quantitative method has addressed the articulation of the AL 288–1 hip joint, nor its range of motion (ROM) with consideration for joint spacing, used as a proxy for the thickness of the articular cartilage present within the joint spacing which can affect how a joint moves. Here, we employed ROM mapping methods to estimate the joint spacing of AL 288–1’s hip joint in comparison to a modern human and chimpanzee. Nine simulations assessed different joint spacing and tested the range of joint congruency (i.e., ranging from a closely packed socket to loosely packed). We further evaluated the sphericity of the femoral head and whether three rotational degrees of freedom (DOFs) sufficiently captures the full ROM or if translational DOFs must be included. With both setups, we found that the AL 288–1 hip was unlikely to be highly congruent (as it is in modern humans) because this would severely restrict hip rotational movement and would severely limit the capability for both bipedality and even arboreal locomotion. Rather, the hip was more cartilaginous than it is in the modern humans, permitting the hip to rotate into positions necessitated by both terrestrial and arboreal movements. Rotational-only simulations found that AL 288–1 was unable to extend the hip like modern humans, forcing the specimen to employ a BHBK style of walking, thus contradicting 40+ years of previous research into the locomotory capabilities of AL 288–1. Therefore, we advocate that differences in the sphericity of the AL 288–1 femoral head with that of a modern human necessitates all six DOFs to be included in which AL 288–1 could osteologically extend the hip to facilitate a human-like gait.

Funder

Leverhulme Trust

University of Cambridge

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3