MEME, MAST, and Meta-MEME: New Tools for Motif Discovery in Protein Sequences

Author:

Bailey Timothy L.

Abstract

We are in the midst of an explosive increase in the number of DNA and protein sequences available for study, as various genome projects come on line. This wealth of information offers important opportunities for understanding many biological processes and developing new plant and animal models, and ultimately drugs, for human diseases, in addition to other applications of modern biotechnology. Unfortunately, sequences are accumulating at a pace that strains present methods for extracting significant biological information from them. A consequence of this explosion in the sequence databases is that there is much interest and effort in developing tools that can efficiently and automatically extract the relevant biological information in sequence data and make it available for use in biology and medicine. In this chapter, we describe one such method that we have developed based on algorithms from artificial intelligence research. We call this software tool MEME (Multiple Expectation-maximization for Motif Elicitation). It has the attractive property that it is an “unsupervised” discovery tool: it can identify motifs, such as regulatory sites in DNA and functional domains in proteins, from large or small groups of unaligned sequences. As we show below, motifs are a rich source of information about a dataset; they can be used to discover other homologs in a database, to identify protein subsets that contain one or more motifs, and to provide information for mutagenesis studies to elucidate structure and function in the protein family as well as its evolution. Learning tools are used to extract higher level biological patterns from lower level DNA and protein sequence data. In contrast, search tools such as BLAST (Basic Local Alignment Search Tool) take a given higher level pattern and find all items in a database that possess the pattern. Searching for items that have a certain pattern is a problem intrinsically easier than discovering what the pattern is from items that possess it. The patterns considered here are motifs, which for DNA data can be subsequences that interact with transcription factors, polymerases, and other proteins.

Publisher

Oxford University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3