This book gives an account of those parts of the analysis of closed linear operators acting in Banach or Hilbert spaces that are relevant to spectral problems involving differential operators, and makes applications to such questions. After the exposition of the abstract theory in the first four chapters, Sobolev spaces are introduced and their main properties established. The remaining seven chapters are largely concerned with second-order elliptic differential operators and related boundary-value problems. Particular attention is paid to the spectrum of the Schrödinger operator. Its original form contains material of lasting importance that is relatively unaffected by advances in the theory since 1987, when the book was first published. The present edition differs from the old by virtue of the correction of minor errors and improvements of various proofs. In addition, it contains Notes at the ends of most chapters, intended to give the reader some idea of recent developments together with additional references that enable more detailed accounts to be accessed.