The Symmetry of Chaos

Author:

Gilmore Robert,Letellier Christophe

Abstract

Abstract There is a tremendous fascination with chaos and fractals, about which picture books can be found on coffee tables everywhere. Chaos and fractals represent hands-on mathematics that is alive and changing. One can turn on a personal computer and create stunning mathematical images that no one has ever seen before. Chaos and fractals are part of dynamics, a larger subject that deals with change, with systems that evolve with time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or does something more complicated, it is dynamics that scientists and mathematicians use to analyze a system’s behavior. Chaos is the term used to describe the apparently complex behavior of what we consider to be simple, well-behaved systems. Chaotic behavior, when looked at casually, looks erratic and almost random. The type of behavior that in the last 20 years has come to be called chaotic arises in very simple systems. In fact, these systems are essentially deterministic; that is, precise knowledge of the conditions of a system allow future behavior of the system to be predicted. The problem of chaos is to reconcile these apparently conflicting notions: randomness and predictability. Why have scientists, engineers, and mathematicians become intrigued by chaos? The answer to that question has two parts: (1) the study of chaos has provided new conceptual tools enabling scientists to categorize and understand complex behavior and (2) chaotic behavior seems to be universal - from electrical circuits to nerve cells. Chaos is about predictability in even the most unstable systems, and symmetry is a pattern of predictability - a conceptual tool to help understand complex behavior. The Symmetry of Chaos treats this interplay between chaos and symmetry. This graduate textbook in physics, applied mathematics, engineering, fluid dynamics, and chemistry is full of exciting new material, illustrated by hundreds of figures. Nonlinear dynamics and chaos are relatively young fields, and in addition to serving textbook markets, there is a strong interest among researchers in new results in the field. The authors are the foremost experts in this field, and this book should give a definitive account of this branch of dynamical systems theory.

Publisher

Oxford University PressNew York, NY

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Adaptive Controller Design for Uncertain Second-Order Jerk Chaotic Systems;International Journal of Advanced Research in Science, Communication and Technology;2024-05-14

2. Robust Stabilization of Uncertain Jerk Chaotic Control Systems with Mixed Uncertainties;International Journal of Advanced Research in Science, Communication and Technology;2024-02-22

3. Archive of novel hidden attractor with multistability and multidirectional chaotic attractors of Moore–Spiegel oscillator;The European Physical Journal Plus;2023-10-23

4. Lorenz-like systems and Lorenz-like attractors: Definition, examples, and equivalences;Physical Review E;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3