Quantum Entropy and Correlations in Quantum Information

Author:

Bertlmann Reinhold A.,Friis Nicolai

Abstract

Abstract Chapter 20 provides a discussion of entropies and entropic quantities in quantum information theory, briefly considering the generalizations of the Rényi entropy to the quantum regime, but mainly focusing on the von Neumann entropy and its properties such as concavity, the Araki-Lieb inequality, and subadditivity. We introduce the quantum relative entropy, quantum joint entropy, quantum conditional entropy, and quantum mutual information, and prove key properties and results for these quantities, including Klein’s inequality, joint convexity, additivity, and monotonicity under completely positive and trace-preserving maps of the relative entropy, as well as weak monotonicity and strong subadditivity of the von Neumann entropy. We then analyse the relation of (negative) conditional entropy and entanglement. In this context we discuss the conditional amplitude operator and the mutual amplitude operator, as well as conditional Rényi entropies and their role for entanglement detection.

Publisher

Oxford University PressOxford

Reference986 articles.

1. Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States.;Phys. Rev. Lett.,2000

2. Classification of mixed three-qubit states.;Phys. Rev. Lett.,2001

3. Grothendieck’s constant and local models for noisy entangled quantum states.;Phys. Rev. A,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3