Forms of the Periodic Table

Author:

Scerri Eric

Abstract

A good deal has been said about the periodic table in previous chapters, but one important aspect has not yet been addressed. This is the question of why so many different periodic tables have been published in textbooks, articles, and on the Internet. One may also wonder whether there exists an “optimal periodic table” and whether such a question even makes sense. Assuming it is a legitimate question, one would like to know what progress has been made toward identifying such an optimal table. Before plunging into this further aspect of chemical periodicity, at least two kinds of differences among periodic tables should be distinguished. First, there is the question of whether the table is presented as having 8, 18, 32, or even higher numbers of columns. Second, there is the question of variations among tables concerning the placement of specific elements such as hydrogen, helium, lanthanum, actinium, lutetium, and lawrencium. In a classic, though flawed, book on the history of the periodic table, Edward Mazurs included illustrations as well as references to about 700 periodic tables that have been published since the periodic table was first assembled in the 1860s. In the 45 or so years that have elapsed since the publication of Mazurs’s book, at least another 300 tables have appeared, not to mention the numerous new periodic systems posted on the Internet. The fact that so many periodic tables exist is something that requires an explanation. Of course, many of these tables may not have anything new to offer, and some are even inconsistent from a scientific point of view. But even if we were to eliminate these misleading proposals, a very large number of tables still remain. In chapter 1, we saw that there are three basic forms of the periodic table: the short form, the medium-long form, and the long form. All three convey very much the same information, although the grouping of elements with the same valence is treated differently in each of these formats.

Publisher

Oxford University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3