Vector Control, Optimal Control, and Vector-Borne Disease Dynamics

Author:

Bonsall Michael B.

Abstract

Understanding methods of vector control is essential to vector-borne disease (VBD) management. Vaccines or standard medical interventions for many VDBs do not exist or are poorly developed so disease control is focused on managing vector numbers and dynamics. This involves understanding not only the population dynamics but also the population genetics of vectors. Using mosquitoes as a case study, in this chapter, the modern genetics-based methods of vector control (self-limiting, self-sustaining) on mosquito population and disease suppression will be reviewed. These genetics-based methods highlight the importance of understanding the interplay between genetics and ecology to develop optimal, cost-effective solutions for control. The chapter focuses on how these genetics-based methods can be integrated with other interventions, and concludes with a summary of regulatory and policy perspectives about the use of these approaches in the management of VBDs.

Publisher

Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3