Convergent Computation by Iterative M:ajorization: Theory and Applications in Multidimensional Data Analysis

Author:

Heiser Willem J

Abstract

Abstract Many problems in multidimensional data analysis involve the optimization of quadratic functions, due to the common assumption of normally distributed errors, together with the prevalence of linear and bilinear models. By present standards, the resulting optimization problems are of moderate complexity, frequently involving the search for eigenvectors and eigenval ues, or projections of vectors on subspaces. Even in fairly complicated situations, such as for example generalized canonical correlation analysis with optimal scaling of the variables (Van der Burg, De Leeuw, and Verde gaal, 1988), it is often possible, by partitioning the parameter space into convenient regions, to split the problem into a connected series of simpler subproblems so that monotonic convergence to at least a local minimum remains guaranteed. This approach is called NIPALS (Wold, 1966), for Nonlinear Iterative PArtial Least Squares, or ALS (De Leeuw, Young, and Takane, 1976), for Alternating Least Squares, and is strongly related to the Gauss-Seidel and block decomposition (or relaxation) methods, which are well-known in numerical analysis for iteratively solving linear systems (e.g., Burden and Faires, 1985).

Publisher

Oxford University PressOxford

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3