In this chapter, the most important quantum-mechanical methods that can be applied to geological materials are described briefly. The approach used follows that of modern quantum-chemistry textbooks rather than being a historical account of the development of quantum theory and the derivation of the Schrödinger equation from the classical wave equation. The latter approach may serve as a better introduction to the field for those readers with a more limited theoretical background and has recently been well presented in a chapter by McMillan and Hess (1988), which such readers are advised to study initially. Computational aspects of quantum chemistry are also well treated by Hinchliffe (1988). In the section that follows this introduction, the fundamentals of the quantum mechanics of molecules are presented first; that is, the “localized” side of Fig. 1.1 is examined, basing the discussion on that of Levine (1983), a standard quantum-chemistry text. Details of the calculation of molecular wave functions using the standard Hartree-Fock methods are then discussed, drawing upon Schaefer (1972), Szabo and Ostlund (1989), and Hehre et al. (1986), particularly in the discussion of the agreement between calculated versus experimental properties as a function of the size of the expansion basis set. Improvements on the Hartree-Fock wave function using configuration-interaction (CI) or many-body perturbation theory (MBPT), evaluation of properties from Hartree-Fock wave functions, and approximate Hartree-Fock methods are then discussed. The focus then shifts to the “delocalized” side of Fig. 1.1, first discussing Hartree-Fock band-structure studies, that is, calculations in which the full translational symmetry of a solid is exploited rather than the point-group symmetry of a molecule. A good general reference for such studies is Ashcroft and Mermin (1976). Density-functional theory is then discussed, based on a review by von Barth (1986), and including both the multiple-scattering self-consistent-field Xα method (MS-SCF-Xα) and more accurate basis-function-density-functional approaches. We then describe the success of these methods in calculations on molecules and molecular clusters. Advances in density-functional band theory are then considered, with a presentation based on Srivastava and Weaire (1987). A discussion of the purely theoretical modified electron-gas ionic models is followed by discussion of empirical simulation, and we conclude by mentioning a recent approach incorporating density-functional theory and molecular dynamics (Car and Parrinello, 1985).