Crackling Noise

Author:

Zapperi Stefano1

Affiliation:

1. Professor, Department of Physics, University of Milan

Abstract

Abstract Crackling noise refers to an intermittent series of pulses of broadly distributed amplitude and duration that is observed in different contexts from the crumpling of a sheet of paper to the flow of fluids in porous media. Studying crackling noise is interesting because it reflects key microscopic processes inside the material, with each crackle in the noise corresponding to an internal avalanche event. A distinct statistical feature of crackling noise is the presence of power law distributed noise pulses and long-range correlations which are the hallmarks of critical phenomena. Hence, the physics of complex non-equilibrium disordered systems provides the natural theoretical framework to tackle crackling noise. The present book reviews the statistical properties of crackling noise, providing an introduction to the main theoretical concepts needed to interpret them. The book also contains a detailed discussion of several examples of crackling noise in materials, including fracture, plasticity, ferromagnetism, superconductivity, granular flow and fluid flow in porous media. A final chapter discusses the relevance of avalanche behavior for biological systems.

Publisher

Oxford University PressOxford

Reference555 articles.

1. Nobel lecture: Type-II superconductors and the vortex lattice.;Rev. Mod. Phys.,2004

2. Evidence for self-organized criticality in the bean critical state in superconductors.;Phys. Rev. E,1998

3. Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.;Phys. Rev. E,2003

4. Extremal dynamics and the approach to the critical state: Experiments on a three-dimensional pile of rice.;Phys. Rev. Lett.,2004

5. Imbibition in disordered media.;Advances in Physics,2004

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3