Population Cycles Causes and Analysis

Author:

Berryman Alan A.

Abstract

Ever since Elton’s classic book Voles, Mice and Lemmings (Elton 1942), understanding and explaining the causes of regular multiannual cycles in animal populations has been a central issue in ecology. Many hypotheses have been erected and incessantly argued about, but no clear picture has emerged. Below I briefly sketch the major hypotheses without any attempt to be complete or to comment on their relative merits or demerits. Detailed reviews and discussion can be found in Keith (1963), Krebs and Myers (1974), Finerty (1980), Myers (1988), Royama (1992), and Stenseth (1999). (H1) Physical effects (e.g., Elton 1924, Bodenheimer 1938). Perhaps the most obvious hypothesis is that cycles in animal populations reflect the response of birth and death rates to an external physical factor that is itself cyclic. Two of the more specific physical hypotheses involve periodic climatic factors and sunspot activity. (H2) Predator effects. Lotka (1924) and Volterra (1926) demonstrated that cyclic dynamics are inherent in simple predator-prey models, leading to the hypothesis that regular cycles can result from interactions between predator and prey populations. (H3) Pathogen effects. Anderson and May (1980) showed that, under certain conditions, simple models of infectious disease transmission can generate cycles in host and pathogen populations. This is similar to H2 with the pathogen as a predator. (H4) Plant effects. Several hypotheses have been proposed for the possible role of plants in generating population cycles of herbivores. One is a generalization of H2 in which the plant is considered the prey and the herbivore the predator (Elton 1924, Pitelka 1957). Another involves nutrient cycling: In this hypothesis, nutrient deficiencies are assumed to reduce the resistance of plants, resulting in larger herbivore populations, but nutrients released in feces and decaying animal and plant matter cycle back to the plants, increasing their vigor and resistance, and resulting in reduced herbivory (e.g., White 1974). Another hypothesis argues that herbivore feeding induces sustained chemical and/or physical changes in the plant (delayed induced resistance), which then reduce the reproduction and/or survival of future herbivore generations (Benz 1974, Haukioja and Hakala 1975).

Publisher

Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3