Elements of hierarchical Bayesian inference

Author:

Carlin Bradley P,Clark James S,Gelfand Alan E

Abstract

Abstract Serious investigation of ecological processes is challenging due to the complex nature of these processes and the lack of sufficient data to see them well. Hence, acknowledging our limitations, we turn to stochastic modeling as a means to capture the uncertainty in inference about the process. Since typically, such processes involve components at different levels, stages, and scales, it is natural to frame our modeling in the context of hierarchical models. In turn, since such models introduce unknowns, for example, parameters or latent processes, we need to incorporate the uncertainty associated with these unknowns in order to achieve a better overall assessment of uncertainty.

Publisher

Oxford University PressOxford

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Cyber-Eco Systems: Networked Sensing, Inference, and Control for Ecological and Agricultural Systems;Handbook of Dynamic Data Driven Applications Systems;2023

2. Introduction to Generalized Linear Mixed Models;Bioinformatic and Statistical Analysis of Microbiome Data;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3