Quantum cryptography

Author:

Barnett Stephen

Abstract

The practical implementation of quantum information technologies requires, for the most part, highly advanced and currently experimental procedures. One exception is quantum cryptography, or quantum key distribution, which has been successfully demonstrated in many laboratories and has reached an advanced level of development. It will probably become the first commercial application of quantum information. In quantum key distribution, Alice and Bob exploit a quantum channel to create a secret shared key comprising a random string of binary digits. This key can then be used to protect a subsequent communication between them. The principal idea is that the secrecy of the key distribution is ensured by the laws of quantum physics. Proving security for practical communication systems is a challenging problem and requires techniques that are beyond the scope of this book. At a fundamental level, however, the ideas are simple and may readily be understood with the knowledge we have already acquired. Quantum cryptography is the latest idea in the long history of secure (and not so secure) communications and, if it is to develop, it will have to compete with existing technologies. For this reason we begin with a brief survey of the history and current state of the art in secure communications before turning to the possibilities offered by quantum communications. The history of cryptography is a long and fascinating one. As a consequence of the success or, more spectacularly, the failure of ciphers, wars have been fought, battles decided, kingdoms won, and heads lost. In the information age, ciphers and cryptosystems have become part of everyday life; we use them to protect our computers, to shop over the Internet, and to access our money via an ATM (automated teller machine). One of the oldest and simplest of all ciphers is the transposition or Caesarean cipher (attributed to Julius Caesar), in which the letters are shifted by a known (and secret) number of places in the alphabet. If the shift is 1, for example, then A is enciphered as B, B→C, · · ·, Y→Z, Z→A. A shift of five places leads us to make the replacements A→F, B→G, · · ·, Y→D, Z→E.

Publisher

Oxford University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Cryptography;Advances in Computational Intelligence and Robotics;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3