The structural habitat of terrestrial urban environments can differ drastically from environments less impacted by human activities. Whether or not urban species use anthropogenic structures, they are subject to novel selection pressures to effectively locomote. Urban environments are distinctly more open than non-urban habitats, they offer few refuges, and habitat space is patchy with clustered perches. Animals must either change their behaviour to use only natural substrates or contend with manufactured substrates. Arboreal species are particularly impacted because the anthropogenic structures with which they interact, even if infrequently, differ from trees in structural, material, and surface properties. The chapter explores potential adaptive responses to the spatial structure and properties of climbing substrates in urban environments relevant to terrestrial and climbing locomotion. For each, the authors first discuss differences between urban and non-urban terrestrial habitats relevant to locomotion. They then discuss how these differences influence behaviour and locomotor demands, providing a mechanism through which natural selection shapes morphology. Lastly, they discuss the morphological traits most likely to be impacted by these altered demands and predict how natural selection may affect these traits in urban environments based on biomechanical principles. As there have been very few studies investigating urban morphological adaptation related to locomotion, the chapter draws on trait–environment relationships in natural environments. The discussion provides a starting point for developing rigorous hypotheses about functionally relevant trait shifts in urban environments and future directions for investigating locomotor adaptations in urban species.