Laboratory Studies of Cirrus Cloud Processes

Author:

DeMott Paul

Abstract

A number of processes that play a role in the formation, evolution of microphysical properties, and radiative characteristics of cirrus clouds are amenable to investigation in a laboratory setting. These laboratory studies provide fundamental data for quantifying and validating theoretical concepts and help guide investigations involving direct and remote measurements of cirrus. Laboratory data also may be used for formulating parameterizations for numerical cloud models, especially where information is incomplete or full descriptions are not possible. This chapter reviews results from laboratory studies of ice formation, ice crystal growth, radiative transfer, and aerosol scavenging and transformation in the cirrus environment. Emphasis is placed on ice formation in cirrus conditions. The related topic of contrail formation is covered separately in this book. The formation mechanisms of lower stratospheric clouds are reviewed elsewhere (e.g., Tolbert 1994; Peter 1996; Carslaw et al. 1997; Koop et al. 1997a). Laboratory studies of cirrus ice formation are at a rapidly developing stage, so it is useful to provide significant background bases for current and needed studies. Key issues are aerosol composition, ice nucleation mechanisms, and the synergy between theory and laboratory measurements. Vali (1996), Baker (1997) and Martin (2000) discuss some of these issues in review papers. Upper tropospheric aerosol particles play an important catalytic role in the formation of cirrus. The nucleation process is important in determining the microphysical properties of cirrus. Numerical modeling studies (e.g., Jensen and Toon 1994; DeMott et al. 1994, 1997; Heymsfield and Sabin 1989) indicate that variation in the factors that drive the nucleation of ice and variations in the physical and chemical characteristics of aerosol particle populations lead to the formation of cirrus with different microphysical characteristics. Knowledge of the physics and chemistry of aerosols in the upper troposphere and lower stratosphere has evolved at a rapid pace. A detailed accounting of this topic is beyond the scope of this chapter. For the purpose of the present discussion, it is sufficient to note that the aerosol from which cirrus nucleate may vary significantly from place to place. Differences in aerosol properties in time and space occur because particles can arrive to the upper troposphere in so many ways and from so many sources.

Publisher

Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3