Preceramic Inorganic Polymers

Author:

Mark James E.,Allcock Harry R.,West Robert

Abstract

One of the most important interfaces in materials science is the one between polymers and ceramics. Ceramics can be viewed as highly cross-linked polymer systems, with the three-dimensional network providing strength, rigidity, and resistance to high temperatures. Although not generally recognized as such, a few ceramics exist that are totally organic (i.e., carbon-based). Melamine-formaldehyde resins, phenolformaldehyde materials, and carbon fibers are well-known examples. However, totally inorganic ceramics are more widely known, many of which are based on the elements silicon, aluminum, or boron combined with oxygen, carbon, or nitrogen. Among the inorganic ceramics, two different classes can be recognized—oxide ceramics and non-oxide materials. The oxide ceramics frequently include silicate structures, and these are relatively low melting materials. The non-oxide ceramics, such as silicon carbide, silicon nitride, aluminum nitride, and boron nitride are some of the highest melting substances known. Non-oxide ceramics are often so high melting that they are difficult to shape and fabricate by the melt- or powder-fusion techniques that are common for oxide materials. One major use for inorganic-organic polymers and oligomers is as sacrificial intermediates for pyrolytic conversion to ceramics. The logic is as follows. Linear, branched, or cyclolinear polymers or oligomers can be fabricated easily by solution- or melt-fabrication techniques. If a polymeric material that has been shaped and fabricated in this way is then cross-linked and pyrolyzed in an inert atmosphere to drive off the organic components (typically, the side groups), the resultant residue may be a totally inorganic ceramic in the shape of the original fabricated article. Thus, ceramic fibers, films, coatings, and shaped objects may by accessible without recourse to the ultra-high temperatures needed for melting of the ceramic material itself. Note, however, that although the final shape of the object may be retained during pyrolysis, the size will be diminished due to the loss of volatile material. If the pyrolysis takes place too quickly, this contraction process may cause cracking of the material and loss of strength.

Publisher

Oxford University Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of shaping method on the densification of SnO2 ceramic pieces;Revista Facultad de Ingeniería Universidad de Antioquia;2014-11-13

2. Surface modification of carbon fiber and the mechanical properties of the silicone rubber/carbon fiber composites;Journal of Applied Polymer Science;2012-04-26

3. Thermal Degradation Behavior and Product Speciation in Model Poly(dimethylsiloxane) Networks;Journal of Inorganic and Organometallic Polymers and Materials;2011-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3