Fluorescence in situ hybridization for identification and visualization of microorganisms in infected heart valve tissue as addition to standard diagnostic tests improves diagnosis of endocarditis

Author:

Eichinger Simone1,Kikhney Judith2,Moter Annette2,Wießner Alexandra2,Eichinger Walter B1

Affiliation:

1. Department of Cardiac Surgery, Hospital Bogenhausen, Munich, Germany

2. Department of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité – University Medicine Berlin, Berlin, Germany

Abstract

Abstract OBJECTIVES In infective endocarditis (IE), identification of the causative organism and consecutive treatment are crucial for patient survival. Although the macroscopic aspect resembles infected tissue, standard diagnostic tests often fail to allow one to identify bacteria. Fluorescence in situ hybridization (FISH) is a molecular, culture-independent technique that allows one to identify and visualize microorganisms within tissue and to recognize their morphology, number and activity. We analysed the diagnostic benefit of FISH/polymerase chain reaction (PCR) by comparing its results to those of standard diagnostic tests. METHODS From September 2015 to April 2018, 128 patients underwent first-time or redo valve surgery to treat IE. Patients were designated according to the modified Duke criteria as definite (n = 61), possible (n = 34) or rejected (n = 33) IE. Tissue specimens obtained intraoperatively were analysed using FISH/PCR in addition to undergoing standard diagnostic testing and PCR alone. RESULTS We used blood cultures to detect microorganisms in 67/128 patients; valve cultures, in 34/128; PCR, in 67/128; histopathological diagnosis showed IE in 72/128 cases. We were able to detect microorganisms in 103/128 cases using FISH/PCR, with 55/61 in definite IE. Furthermore, we were able to identify 26 cases of bacterial biofilm using FISH/PCR, despite antibiotic treatment of 61 in the definite, 13 in the possible and 1 in the rejected group, including 8/33 patients in the rejected group with active bacteria. In all cases, the patient’s therapy was altered. CONCLUSIONS FISH/PCR was used to identify microorganisms in cases in which standard diagnostic tests failed to provide sufficient results for various reasons. Furthermore, FISH/PCR enabled us to identify bacterial biofilms and to differentiate between active versus degraded bacteria, thus indicating the impact of treatment. Therefore, we suggest FISH/PCR as an additional diagnostic tool in IE alongside standard diagnostic tests.

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,Surgery

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3