Three-dimensional modelling of aortic leaflet coaptation and load-bearing surfaces: in silico design of aortic valve neocuspidizations

Author:

Macé Loïc Georges12ORCID,Fringand Tom2,Cheylan Isabelle2,Sabatier Laurent3,Meille Laurent4,Lenoir Marien12,Favier Julien2

Affiliation:

1. Department of Cardiac Surgery, La Timone Hospital, AP-HM, Aix Marseille Univ , Marseille, France

2. Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France

3. Aix Marseille Univ, CNRS, Centrale Med, LMA, Marseille, France

4. Cardiovascular Department, Clinique Rhône Durance , Avignon, France

Abstract

Abstract OBJECTIVES Three-dimensional (3D) modelling of aortic leaflets remains difficult due to insufficient resolution of medical imaging. We aimed to model the coaptation and load-bearing surfaces of the aortic leaflets and adapt this workflow to aid in the design of aortic valve neocuspidizations. METHODS Geometric morphometrics, using landmarks and semilandmarks, was applied to the geometric determinants of the aortic leaflets from computed tomography, followed by an isogeometric analysis using Non-Uniform Rational Basis Splines (NURBS). Ten aortic valve models were generated, measuring determinants of leaflet geometry defined as 3D NURBS curves, and leaflet coaptation and load-bearing surfaces were defined as 3D NURBS surfaces. Neocuspidizations were obtained by either shifting the upper central coaptation landmark towards the sinotubular junction or using parametric neo-landmarks placed on a centreline drawn between the centroid of the aortic root base and centroid of a circle circumscribing the 3 upper commissural landmarks. RESULTS The ratio of the leaflet free margin length to the geometric height was 1.83, whereas the ratio of the commissural coaptation height to the central coaptation height was 1.93. The median coaptation surface was 137 mm2 (IQR 58) and the median load-bearing surface was 203 mm2 (60) per leaflet. Neocuspidization multiplied the central coaptation height by 3.7 and the coaptation surfaces by 1.97 and 1.92 using the native coaptation axis and centroid coaptation axis, respectively. CONCLUSIONS Geometric morphometrics reliably defined the coaptation and load-bearing surfaces of aortic leaflets, enabling an experimental 3D design for the in silico neocuspidization of aortic valves.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3