Machine learning for electric energy consumption forecasting: Application to the Paraguayan system

Author:

Morales-Mareco Félix1,García-Torres Miguel2,Divina Federico3,Stalder Diego H4,Sauer Carlos5

Affiliation:

1. Facultad de Ingeniería , Universidad Nacional de Asunción, Campus Universitario, 111421, San Lorenzo , Spain , felixmorales@fiuna.edu.py

2. Data Science and Big Data Lab , Universidad Pablo de Olavide, ES-41013, Seville , Spain , mgarciat@upo.es

3. Data Science and Big Data Lab , Universidad Pablo de Olavide, ES-41013, Seville , Spain , fdiv@upo.es

4. Facultad de Ingeniería , Universidad Nacional de Asunción, Campus Universitario, 111421, San Lorenzo , Spain , dstalder@ing.una.py

5. Facultad de Ingeniería , Universidad Nacional de Asunción, Campus Universitario, 111421, San Lorenzo , Spain , csauer@inv.una.py

Abstract

Abstract In this paper we address the problem of short-term electric energy prediction using a time series forecasting approach applied to data generated by a Paraguayan electricity distribution provider. The dataset used in this work contains data collected over a three-year period. This is the first time that these data have been used; therefore, a preprocessing phase of the data was also performed. In particular, we propose a comparative study of various machine learning and statistical strategies with the objective of predicting the electric energy consumption for a given prediction horizon, in our case seven days, using historical data. In this paper we have tested the effectiveness of the techniques with different historical window sizes. Specifically, we considered two ensemble strategies, a neural network, a deep learning technique and linear regression. Moreover, in this study, we tested whether the inclusion of meteorological data can help achieve better predictions. In particular, we considered data regarding temperature, humidity, wind speed and atmospheric pressure registered during the three-year period of data collection. The results show that, in general, the deep learning approach obtains the best results and that such results are obtained when meteorological data are also considered. Moreover, when meteorological data is used, a smaller historical window size is required to obtain precise predictions.

Funder

Spanish Ministry of Science and Innovation

European Regional Development Fund and Junta de Andalucía

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3