Analyzing time series to forecast hot rolled coil steel price in Spain by means of neural non-linear models

Author:

Alcalde Roberto12,GarcÍa Santiago34,Manzanedo Manuel56,Basurto Nuño78,de Armiño Carlos Alonso910,Urda Daniel1112,Alonso Belén1314

Affiliation:

1. Departamento de Economía y Administración de Empresas , Facultad de Ciencias Económicas y Empresariales, , S/N, 09001 Burgos , Spain , radelgado@ubu.es

2. Universidad de Burgos, Pza. de la Infanta Dña. Elena , Facultad de Ciencias Económicas y Empresariales, , S/N, 09001 Burgos , Spain , radelgado@ubu.es

3. Departamento de Ingeniería de Organización , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , lgpineda@ubu.es

4. Universidad de Burgos , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , lgpineda@ubu.es

5. Departamento de Digitalización , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , mms0133@alu.ubu.es

6. Universidad de Burgos , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , mms0133@alu.ubu.es

7. Departamento de Digitalización , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , nbasurto@ubu.es

8. Universidad de Burgos , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , nbasurto@ubu.es

9. Departamento de Digitalización , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , caap@ubu.es

10. Universidad de Burgos , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , caap@ubu.es

11. Departamento de Digitalización , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , durda@ubu.es

12. Universidad de Burgos , Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , durda@ubu.es

13. Departamento de Química , Escuela Politécnica Superior, , C/Villadiego s/n. 09001 Burgos , balonso@ubu.es

14. Universidad de Burgos , Escuela Politécnica Superior, , C/Villadiego s/n. 09001 Burgos , balonso@ubu.es

Abstract

Abstract In the industrial context, steel is a broadly-used raw material with applications in many different fields. Due to its high impact in the activity of many industries all over the world, forecasting its price is of utmost importance for a huge amount of companies. In this work, non-linear neural models are applied for the first time to different datasets in order to validate their suitability when predicting the price of this commodity. In particular, the NAR, NIO and NARX neural network models are innovatively applied for the first time to forecast the price of hot rolled steel in Spain. Besides these variety of models, different datasets consisting of a set of heterogenous variables from the last seven years and related to the price of this commodity are benchmarked and analyzed. The results showed that NARX is the best performing model when the price of raw materials used to produce steel and the stock market prices of three major global steel producing companies are employed as input to this predictive model. Consequently, this result may boost the application of Machine Learning in companies, in order to schedule the supplying operations according to the price forecasting.

Publisher

Oxford University Press (OUP)

Reference24 articles.

1. Stationarity of prices of precious and industrial metals using recent unit root methods: Implications for markets’ efficiency;Adewuyi;Resources Policy,2020

2. Forecasting steel prices using ARIMAX model: A case study of Turkey;Adli;The International Journal of Business Management and Technology,2020

3. Non-linear neural models to predict HRC steel price in Spain;Alcalde;Lecture Notes in Networks and Systems,2023

4. Analysing the intermeshed patterns of road transportation and macroeconomic indicators through neural and clustering techniques;Alonso de Armiño;Pattern Analysis and Applications,2020

5. Steel price forcasting using long short-term memory network model;Cetin;UBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3