Fraïssé’s theorem for logics of formal inconsistency

Author:

Mendonça Bruno R1,Carnielli Walter A1

Affiliation:

1. Centre for Logic, Epistemology and the History of Science, R. Sérgio Buarque de Holanda, 251, Cidade Universitária, Campinas, Brazil

Abstract

Abstract We prove that the minimal Logic of Formal Inconsistency (LFI) $\mathsf{QmbC}$ (basic quantified logic of formal inconsistency) validates a weaker version of Fraïssé’s theorem (FT). LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the recent interest in LFIs, their model-theoretic properties are still not fully understood. Our aim in this paper is to investigate the situation. Our interest in FT has to do with its fruitfulness; the preservation of FT indicates that a number of other classical semantic properties can be also salvaged in LFIs. Further, given that FT depends on truth-functionality (a property that, in general, fails in LFIs), whether full FT holds for $\mathsf{QmbC}$ becomes a challenging question.

Funder

National Council for Scientific and Technological Development

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference14 articles.

1. Models & proofs: LFIs without a canonical interpretation;Barrio,2018

2. A taxonomy of C-systems;Carnielli,2002

3. Towards a philosophical understanding of the logics of formal inconsistency;Carnielli;Manuscrito,2015

4. Logics of formal inconsistency;Carnielli,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3