A resolution calculus for MinSAT

Author:

Li Chu-Min1,Xiao Fan2,Manyà Felip3

Affiliation:

1. School of Computer Science, Huazhong University of Science and Technology, 430074 Wuhan, China and MIS, Université de Picardie Jules Verne, 80080 Amiens, France

2. School of Computer Science, Huazhong University of Science and Technology, 430074 Wuhan, China

3. Artificial Intelligence Research Institute (IIIA, CSIC), 08193 Bellaterra, Spain

Abstract

Abstract The logical calculus for SAT are not valid for MaxSAT and MinSAT because they preserve satisfiability but not the number of unsatisfied clauses. To overcome this drawback, a MaxSAT resolution rule preserving the number of unsatisfied clauses was defined in the literature. This rule is complete for MaxSAT when it is applied following a certain strategy. In this paper we first prove that the MaxSAT resolution rule also provides a complete calculus for MinSAT if it is applied following the strategy proposed here. We then describe an exact variable elimination algorithm for MinSAT based on that rule. Finally, we show how the results for Boolean MinSAT can be extended to solve the MinSAT problem of the multiple-valued clausal forms known as signed conjunctive normal form formulas.

Funder

EU H2020 Research and Innovation Programme

Ministerio de Economía y Competitividad

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference39 articles.

1. On the resiliency of unit propagation to Max-Resolution;Abramé,2015

2. A Max-SAT solver with lazy data structures;Alsinet,2004

3. A complete resolution calculus for Signed Max-SAT;Ansótegui,2007

4. Inference rules for high-order consistency in weighted CSP;Ansótegui,2007

5. The logic behind weighted CSP;Ansótegui,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bloomfilter-Based Practical Kernelization Algorithms for Minimum Satisfiability;Communications in Computer and Information Science;2023-11-26

2. A Tableau Calculus for MaxSAT Based on Resolution;Frontiers in Artificial Intelligence and Applications;2022-10-17

3. Inference in MaxSAT and MinSAT;The Logic of Software. A Tasting Menu of Formal Methods;2022

4. A primal–dual approximation algorithm for Minsat;Discrete Applied Mathematics;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3