Surrogate-based optimization of learning strategies for additively regularized topic models

Author:

Khodorchenko Maria1,Butakov Nikolay1,Sokhin Timur1,Teryoshkin Sergey1

Affiliation:

1. ITMO University , 49 Kronverksky pr., St Petersburg, 197101, Russia

Abstract

Abstract Topic modelling is a popular unsupervised method for text processing that provides interpretable document representation. One of the most high-level approaches is additively regularized topic models (ARTM). This method features better quality than other methods due to its flexibility and advanced regularization abilities. However, it is challenging to find an optimal learning strategy to create high-quality topics because a user needs to select the regularizers with their values and determine the order of application. Moreover, it may require many real runs or model training which makes this task time consuming. At the current moment, there is a lack of research on parameter optimization for ARTM-based models. Our work proposes an approach that formalizes the learning strategy into a vector of parameters which can be solved with evolutionary approach. We also propose a surrogate-based modification which utilizes machine learning methods that makes the approach for parameters search time efficient. We investigate different optimization algorithms (evolutionary and Bayesian) and their modifications with surrogates in application to topic modelling optimization using the proposed learning strategy approach. An experimental study conducted on English and Russian datasets indicates that the proposed approaches are able to find high-quality parameter solutions for ARTM and substantially reduce the execution time of the search.

Funder

The Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference26 articles.

1. Model-based genetic algorithms for algorithm configuration;Ansótegui,2015

2. Additive regularization for topic modeling in sociological studies of user-generated texts;Apishev,2017

3. Co-evolutional genetic algorithm for workflow scheduling in heterogeneous distributed environment;Butakov,2014

4. Unified domain-specific language for collecting and processing data of social media;Butakov;Information Systems,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3