Axiomatization of modal logic with counting

Author:

Fu Xiaoxuan1,Zhao Zhiguang2

Affiliation:

1. China University of Political Science and Law , Beijing, China

2. Taishan University , Tai'an, China

Abstract

Abstract Modal logic with counting is obtained from basic modal logic by adding cardinality comparison formulas of the form $ \#\varphi \succsim \#\psi $, stating that the cardinality of successors satisfying $ \varphi $ is larger than or equal to the cardinality of successors satisfying $ \psi $. It is different from graded modal logic where basic modal logic is extended with formulas of the form $ \Diamond _{k}\varphi $ stating that there are at least $ k$-many different successors satisfying $ \varphi $. In this paper, we investigate the axiomatization of ML(#) with respect to different frame classes, such as image-finite frames and arbitrary frames. Drawing inspiration from existing works, we employ a similar proof strategy that uses the characterization of binary relations on finite Boolean algebras capable of representing generalized probability measures or finite (respectively arbitrary) cardinality measures. Our main result shows that any formula not provable in the Hilbert system can be refuted within a finite (respectively arbitrary) cardinality measure Kripke frame with a finite domain. We then transform this finite (respectively arbitrary) cardinality measure Kripke frame into a Kripke frame in the corresponding class, refuting the unprovable formula.

Publisher

Oxford University Press (OUP)

Reference23 articles.

1. Numerical abstraction via the Frege quantifier;Aldo Antonelli;Notre Dame Journal of Formal Logic,2010

2. Extending the description logic ALC with more expressive cardinality constraints on concepts;Baader,2017

3. One-variable logic meets Presburger arithmetic;Bednarczyk;Theoretical Computer Science,2020

4. Presburger Büchi tree automata with applications to logics with expressive counting;Bednarczyk,2022

5. On classical decidable logics extended with percentage quantifiers and arithmetics;Bednarczyk,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3