Air Pollution Monitoring Using WSN Nodes with Machine Learning Techniques: A Case Study

Author:

Rosero-Montalvo Paul D1,López-Batista Vivian F2,Arciniega-Rocha Ricardo3,Peluffo-Ordóñez Diego H4

Affiliation:

1. Department of Computer Science and Automatics, Universidad de Salamanca, 37008 Salamanca, Spain, and Department of Applied Sciences, Universidad Técnica del Norte, 100150 Ibarra, Ecuador

2. Department of Computer Science and Automatics, Universidad de Salamanca, 37008 Salamanca, Spain

3. Department of Technologies, Instituto Tecnológico Superior 17 de Julio, Urcuquí 100650, Ecuador

4. Department of Engineering Corporación Universitaria Autónoma de Nariño, Pasto 520002, Colombia, and Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco

Abstract

Abstract Air pollution is a current concern of people and government entities. Therefore, in urban scenarios, its monitoring and subsequent analysis is a remarkable and challenging issue due mainly to the variability of polluting-related factors. For this reason, the present work shows the development of a wireless sensor network that, through machine learning techniques, can be classified into three different types of environments: high pollution levels, medium pollution and no noticeable contamination into the Ibarra City. To achieve this goal, signal smoothing stages, prototype selection, feature analysis and a comparison of classification algorithms are performed. As relevant results, there is a classification performance of 95% with a significant noisy data reduction.

Funder

Smart Data Analysis Systems group

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference25 articles.

1. Urban air pollution monitoring system with forecasting models;Bashir Shaban;IEEE Sensors Journal,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3