Affiliation:
1. Institute for Information Transmission Problems , Russian Academy of Sciences, Moscow 127051, Russia, and National Research University Higher School of Economics, Moscow 101000, Russia
Abstract
AbstractIn this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\textbf {QwGrz}$ and $\textbf {QGL.3}$ or between $\textbf {QwGrz}$ and $\textbf {QGrz.3}$ is $\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single proposition letter. As a corollary, it is proved that infinite families of modal predicate axiomatic systems, based on the classical first-order logic and the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ are not Kripke complete. Both $\Pi ^1_1$-hardness and Kripke incompleteness results of the paper do not depend on whether the logics contain the Barcan formula.
Funder
Russian Science Foundation
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献