Slope-to-optimal-solution-based evaluation of the hardness of travelling salesman problem instances

Author:

Cárdenas-Montes Miguel1

Affiliation:

1. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Department of Fundamental Research, Madrid, Spain

Abstract

AbstractThe travelling salesman problem is one of the most popular problems in combinatorial optimization. It has been frequently used as a benchmark of the performance of evolutionary algorithms. For this reason, nowadays practitioners request new and more difficult instances of this problem. This leads to investigate how to evaluate the intrinsic difficulty of the instances and how to separate ease and difficult instances. By developing methodologies for separating easy- from difficult-to-solve instances, researchers can fairly test the performance of their combinatorial optimizers. In this work, a methodology for evaluating the difficulty of instances of the travelling salesman problem near the optimal solution is proposed. The question is if the fitness landscape near the optimal solution encodes enough information to separate instances in function of their intrinsic difficulty. This methodology is based on the use of a random walk to explore the closeness of the optimal solution. The optimal solution is modified by altering one connection between two cities at each step, at the same time that the fitness of the altered solution is evaluated. This permits evaluating the slope of the fitness landscape. Later, and using the previous information, the difficulty of the instance is evaluated with random forests and artificial neural networks. In this work, this methodology is confronted with a wide set of instances. As a consequence, a methodology to separate the instances of the travelling salesman problem by their degree of difficulty is proposed and evaluated.

Funder

Spanish Ministry of Economy and Competitiveness

Unidad de Excelencia María de Maeztu’: CIEMAT - FÍSICA DE PARTÍCULAS

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Be Your Neighbor's Miner: Building Trust in Ledger Content via Reciprocally Useful Work;2020 IEEE 13th International Conference on Cloud Computing (CLOUD);2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3