Functoriality of the Schmidt construction

Author:

Climent Vidal Juan1,Cosme Llópez Enric2

Affiliation:

1. Departament de Lògica i Filosofia de la Ciència, Universitat de València , Av. Blasco Ibáñez, 30-7 a , 46100 València, Spain

2. Departament de Matemàtiques, Universitat de València , Dr. Moliner, 50, 46100 Burjassot, València, Spain

Abstract

Abstract After proving, in a purely categorial way, that the inclusion functor $\textrm {In}_{\textbf {Alg}(\varSigma )}$ from $\textbf {Alg}(\varSigma )$, the category of many-sorted $\varSigma $-algebras, to $\textbf {PAlg}(\varSigma )$, the category of many-sorted partial $\varSigma $-algebras, has a left adjoint $\textbf {F}_{\varSigma }$, the (absolutely) free completion functor, we recall, in connection with the functor $\textbf {F}_{\varSigma }$, the generalized recursion theorem of Schmidt, which we will also call the Schmidt construction. Next, we define a category $\textbf {Cmpl}(\varSigma )$, of $\varSigma $-completions, and prove that $\textbf {F}_{\varSigma }$, labelled with its domain category and the unit of the adjunction of which it is a part, is a weakly initial object in it. Following this, we associate to an ordered pair $(\boldsymbol {\alpha },f)$, where $\boldsymbol {\alpha }=(K,\gamma ,\alpha )$ is a morphism of $\varSigma $-completions from ${{\mathscr {F}}}=(\textbf {C},F,\eta )$ to $\mathscr {G}= (\textbf {D},G,\rho )$ and $f$ a homomorphism of $\textbf {D}$ from the partial $\varSigma $-algebra $\textbf {A}$ to the partial $\varSigma $-algebra $\textbf {B}$, a homomorphism $\varUpsilon ^{\mathscr {G},0}_{\boldsymbol {\alpha }}(f)\colon \textbf {Sch}_{\boldsymbol {\alpha }}(f)\longrightarrow \textbf {B}$. We then prove that there exists an endofunctor, $\varUpsilon ^{\mathscr {G},0}_{\boldsymbol {\alpha }}$, of $\textbf {Mor}_{\textrm {tw}}(\textbf {D})$, the twisted morphism category of $\textbf {D}$, thus showing the naturalness of the previous construction. Afterwards, we prove that, for every $\varSigma $-completion $\mathscr {G}=(\textbf {D},G,\rho )$, there exists a functor $\varUpsilon ^{\mathscr {G}}$ from the comma category $(\textbf {Cmpl}(\varSigma )\!\downarrow \!\mathscr {G})$ to $\textbf {End}(\textbf {Mor}_{\textrm {tw}}(\textbf {D}))$, the category of endofunctors of $\textbf {Mor}_{\textrm {tw}}(\textbf {D})$, such that $\varUpsilon ^{\mathscr {G},0}$, the object mapping of $\varUpsilon ^{\mathscr {G}}$, sends a morphism of $\varSigma $-completion of $\textbf {Cmpl}(\varSigma )$ with codomain $\mathscr {G}$, to the endofunctor $\varUpsilon ^{\mathscr {G},0}_{\boldsymbol {\alpha }}$.

Funder

Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, Spain

FEDER, European Union

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference52 articles.

1. Generalization of the concept of variety and quasivariety to partial algebras through category theory;Andréka;Dissertationes Mathematicae (Rozprawy Matematyczne),1983

2. Structures algébriques dans les catégories;Bénabou;Cahiers de Topologie et Géométrie Différentielle Catégoriques,1968

3. An Invitation to General Algebra and Universal Constructions

4. On the completion of partial algebras;Burmeister;Colloquium Mathematicum,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3