Affiliation:
1. Departament de Lògica i Filosofia de la Ciència, Universitat de València , Av. Blasco Ibáñez, 30-7 a , 46100 València, Spain
2. Departament de Matemàtiques, Universitat de València , Dr. Moliner, 50, 46100 Burjassot, València, Spain
Abstract
Abstract
After proving, in a purely categorial way, that the inclusion functor $\textrm {In}_{\textbf {Alg}(\varSigma )}$ from $\textbf {Alg}(\varSigma )$, the category of many-sorted $\varSigma $-algebras, to $\textbf {PAlg}(\varSigma )$, the category of many-sorted partial $\varSigma $-algebras, has a left adjoint $\textbf {F}_{\varSigma }$, the (absolutely) free completion functor, we recall, in connection with the functor $\textbf {F}_{\varSigma }$, the generalized recursion theorem of Schmidt, which we will also call the Schmidt construction. Next, we define a category $\textbf {Cmpl}(\varSigma )$, of $\varSigma $-completions, and prove that $\textbf {F}_{\varSigma }$, labelled with its domain category and the unit of the adjunction of which it is a part, is a weakly initial object in it. Following this, we associate to an ordered pair $(\boldsymbol {\alpha },f)$, where $\boldsymbol {\alpha }=(K,\gamma ,\alpha )$ is a morphism of $\varSigma $-completions from ${{\mathscr {F}}}=(\textbf {C},F,\eta )$ to $\mathscr {G}= (\textbf {D},G,\rho )$ and $f$ a homomorphism of $\textbf {D}$ from the partial $\varSigma $-algebra $\textbf {A}$ to the partial $\varSigma $-algebra $\textbf {B}$, a homomorphism $\varUpsilon ^{\mathscr {G},0}_{\boldsymbol {\alpha }}(f)\colon \textbf {Sch}_{\boldsymbol {\alpha }}(f)\longrightarrow \textbf {B}$. We then prove that there exists an endofunctor, $\varUpsilon ^{\mathscr {G},0}_{\boldsymbol {\alpha }}$, of $\textbf {Mor}_{\textrm {tw}}(\textbf {D})$, the twisted morphism category of $\textbf {D}$, thus showing the naturalness of the previous construction. Afterwards, we prove that, for every $\varSigma $-completion $\mathscr {G}=(\textbf {D},G,\rho )$, there exists a functor $\varUpsilon ^{\mathscr {G}}$ from the comma category $(\textbf {Cmpl}(\varSigma )\!\downarrow \!\mathscr {G})$ to $\textbf {End}(\textbf {Mor}_{\textrm {tw}}(\textbf {D}))$, the category of endofunctors of $\textbf {Mor}_{\textrm {tw}}(\textbf {D})$, such that $\varUpsilon ^{\mathscr {G},0}$, the object mapping of $\varUpsilon ^{\mathscr {G}}$, sends a morphism of $\varSigma $-completion of $\textbf {Cmpl}(\varSigma )$ with codomain $\mathscr {G}$, to the endofunctor $\varUpsilon ^{\mathscr {G},0}_{\boldsymbol {\alpha }}$.
Funder
Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, Spain
FEDER, European Union
Publisher
Oxford University Press (OUP)
Reference52 articles.
1. Generalization of the concept of variety and quasivariety to partial algebras through category theory;Andréka;Dissertationes Mathematicae (Rozprawy Matematyczne),1983
2. Structures algébriques dans les catégories;Bénabou;Cahiers de Topologie et Géométrie Différentielle Catégoriques,1968
3. An Invitation to General Algebra and Universal Constructions
4. On the completion of partial algebras;Burmeister;Colloquium Mathematicum,1967