Involving cognitive science in model transformation for description logics

Author:

Hieke Willi1,Schwöbel Sarah2,Smolka Michael N3

Affiliation:

1. Section of Systems Neuroscience , Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany, willi.hieke@tu-dresden.de

2. Chair of Cognitive Computational Neuroscience , Faculty of Psychology, Technische Universität Dresden, Dresden, Germany, sarah.schwoebel@tu-dresden.de

3. Section of Systems Neuroscience , Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany, michael.smolka@tu-dresden.de

Abstract

Abstract Knowledge representation and reasoning (KRR) is a fundamental area in artificial intelligence (AI) research, focusing on encoding world knowledge as logical formulae in ontologies. This formalism enables logic-based AI systems to deduce new insights from existing knowledge. Within KRR, description logics (DLs) are a prominent family of languages to represent knowledge formally. They are decidable fragments of first-order logic, and their models can be visualized as edge- and vertex-labeled directed binary graphs. DLs facilitate various reasoning tasks, including checking the satisfiability of statements and deciding entailment. However, a significant challenge arises in the computation of models of DL ontologies in the context of explaining reasoning results. Although existing algorithms efficiently compute models for reasoning tasks, they usually do not consider aspects of human cognition, leading to models that may be less effective for explanatory purposes. This paper tackles this challenge by proposing an approach to enhance the intelligibility of models of DL ontologies for users. By integrating insights from cognitive science and philosophy, we aim to identify key graph properties that make models more accessible and useful for explanation.

Publisher

Oxford University Press (OUP)

Reference40 articles.

1. Evonne: Interactive proof visualization for description logics (system description);Alrabbaa,2022

2. Finding small proofs for description logic entailments: Theory and practice;Alrabbaa,2020

3. Explaining non-entailment by model transformation for the description logic $\mathcal{EL}$;Alrabbaa,2022

4. Pushing the $\mathcal{EL}$ envelope;Baader,2005

5. The Description Logic Handbook

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3